Researchers study the viscoelasticity of human cells as a response to external cues using the high-throughput AFS®

A recent publication in Small introduces you to the value of acoustic force spectroscopy (AFS®) to study the viscoelastic properties of individual cells in high throughput. The authors describe how they used this “plug-and-play” instrument to measure mechanical cell properties upon external cues seamlessly.

Romanov et al. specifically assessed how alterations to three parameters (temperature, drug exposure, or membrane-protein expression) influence the viscoelastic characteristics of human cell line HEK293T. In essence, the team could distinguish between cell viscosities by assessing the so-called mean square displacement of randomly moving cells, which describes their deviation from a reference-specific position.

Using this method, the researchers explored changes to the stiffness and fluidity of the cells upon changes in their immediate environment.

“The AFS presents as a powerful tool for capturing the heterogeneity of living cells through rapid, high-throughput measurements of cellular viscoelasticity,” the authors concluded. “A significant advantage of the technique is the ‘plug-and-play’ format that makes force calibration and viscoelastic measurements intuitive and easy.”

Check out the full story “An acoustic platform for single-cell, high-throughput measurements of the viscoelastic properties of cells” in the journal Small if you want to know how to use high-throughput force spectroscopy to assess the properties of single cells.

Are you interested in using force spectroscopy tools like the AFS® or C-Trap® for your research? Feel free to contact us for more information, a demo, or a quote.

For pricing, reach out to your application scientist or account manager

Open Email

Fill in our contact form, we will reach out to you!

Please include ‘Lakeview data analysis price inquiry’ in the Message box

Contact Us

Join our newsletter

Get exclusive news on the latest publications, product developments, events and breakthrough science.

By submitting the form you agree to LUMICKS' privacy policy. You can revoke your consent at any time.

Download our webinar recording:


Download our Cell Therapy (CAR-T, TCR, NK) applications deck