Part of: Knowledge repository

Explore a range of publications within our dynamic single-molecule application field

Zhang, Q. et al. Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacerNucleic Acids Research, 2021.

Buzón, P. et al. Virus self-assembly proceeds through contact-rich energy minima. Science Advances, 2021.

Davis, R. B. et al. FUS Oncofusion Protein Condensates Recruit mSWI/SNF Chromatin Remodeler via Heterotypic Interactions Between Prion-like Domains. Protein Science, 2021.

Lin, SN. et al. Direct visualization of the effect of DNA structure and ionic conditions on HU–DNA interactions. Scientific Reports, 2021.

Losito, M. et al. Cas12a Target Search and Cleavage on Force-Stretched DNAPCCP, 2021.

Newton, M. D. et al. A Minimal Load-and-Lock RuII Luminescent DNA ProbeAngew. Chem. Int. Ed, 2021.

Backer, A. S. et al. Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy. J. Phys. Chem. B, 2021.

de Asis Balaguer, F. et al. CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parSeLife, 2021.

Quail, T. et al. Force generation by protein–DNA co-condensationNature Physics, 2021.

Belan, O. et al. Generation of versatile ss-dsDNA hybrid substrates for single-molecule analysis. STAR Protocols, 2021.

Keenen, M. M. et al. HP1 proteins compact DNA into mechanically and positionally stable phase separated domainseLife, 2021.

Renger, R. et al. Co-condensation of proteins with single- and double-stranded DNAbioRxiv, 2021.

Belan, O. et al. Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Molecular Cell, 2021.

Sánchez, H. et al. DNA replication origins retain mobile licensing proteins. Nature Communications, 2021.

Ye, S. et al. Proximal Single-Stranded RNA Destabilizes Human Telomerase RNA G-Quadruplex and Induces Its Distinct Conformers. J. Phys. Chem. Lett, 2021.

Lin, X. et al. Cooperative DNA looping by PRC2 complexes. Nucleic Acids Research, 2021.

Kretzer, B. et al. Single-Molecule Mechanics in Ligand Concentration GradientMicromachines, 2020.

Qin, Z. et alHuman RPA activates BLM’s bidirectional DNA unwinding from a nickeLife, 2020.

Rill, N. et alAlkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. PNAS, 2020.

Khawaja, A. et al. Distinct pre-initiation steps in human mitochondrial translation. Nature Communications, 2020.

Spakman, D. et al. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Scientific Reports, 2020.

Zhang, S. et al. Dynamics of Staphylococcus aureus Cas9 in DNA target Association and Dissociation. EMBO Rep, 2020.

Newton, M. et al. DNA stretching induces Cas9 off-target activityNature Structural & Molecular Biology, 2019.

Zheng, Q. et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communications, 2019.

Kosinski R. et al. Sites of high local frustration in DNA origami. Nature Communications, 2019.

Wasserman, M. et al. Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell, 2019.

Marchetti, M. et al. Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. Nano Letters, 2019.

Gutierrez-Escribano, P. et al.A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Science Advances, 2019.

Zhang, Q. et al. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation. Science Advances, 2019.

Leicher, R. et al. Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. PNAS, 2019.

Schepers, A. V. et al. Multiscale mechanics and temporal evolution of vimentin intermediate filament networks. PNAS, 2021.

Budaitis, B. G. et al. Pathogenic Mutations in the Kinesin-3 Motor KIF1A Diminish Force Generation and Movement Through Allosteric MechanismsbioRxiv, 2021.

Lam, A. J. et al. A Highly Conserved 310-Helix Within the Kinesin Motor Domain is Critical for Kinesin Function and Human Health. bioRxiv, 2021.

Kučera, O. et al. Anillin propels myosin-independent constriction of actin rings. Nature Communications, 2021.

Nguyen, A. et al. Multi-oscillation microrheology via Acoustic Force Spectroscopy enables frequency-dependent measurements on endothelial cells at high-throughput. Lab on a Chip2021.

Schaedel, L. et al. Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions. Nature Communications, 2021.

Sorkin, R. et al. Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophysical Journal, 2020.

Schepers, A. et al. Tuning intermediate filament mechanics by indirect and direct charge variations. Nanoscale, 2020.

Mei, L. et al. Molecular mechanism for direct actin force-sensing by α-catenineLife, 2020.

Kraxner, J. et al. Post-Translational Modifications Soften Vimentin Intermediate Filaments. Nanoscale, 2020.

Kučera, O. et al. Anillin propels myosin-independent constriction of actin rings. bioRxiv, 2020.

Forsting, J. et al. Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading. Nano Letters, 2019.

Lorenz, C. et al. Lateral Subunit Coupling Determines Intermediate Filament Mechanics. Physical Review Letters, 2019.

Block, J. et al. Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science Advances, 2018.

Block, J. et al. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied StrainPhysical Review Letters, 2017.

Alshareedah, I. et al. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nature Communications, 2021

Ghosh, A. et al. Shear relaxation governs fusion dynamics of biomolecular condensates. Nature Communications, 2021.

Alshareedah, I. et al. Quantifying Viscosity and Surface Tension of Multi-Component Protein-Nucleic Acid Condensates. Biophysical Journal, 2021.

Rhine, K. et al. Single-molecule and ensemble methods to probe RNP nucleation and condensate propertiesMethods, 2021.

Alshareedah, I. et al. Phase transition of RNA−protein complexes into ordered hollow condensates. PNAS, 2020.

Ghosh, A. and Zhou, H.-X. Determinants for Fusion Speed of Biomolecular Droplets. The Journal of Physical Chemistry B, 2020.

Jawerth, L. et al. Protein condensates as aging Maxwell fluids. Science, 2020.

Kaur, T. et al. Sequence-encoded and Composition-dependent Protein-RNA Interactions Control Multiphasic Condensate Topologies. bioRxiv, 2020.

Kaur, T. et al. Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates. Biomolecules, 2019.

Gui, X., et al. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communications, 2019.

Alshareedah, I. et al. Interplay between Short-Range Attraction and Long-Range Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein–RNA Complexes. Journal of the American Chemical Society, 2019.

Jawerth, L. et al. Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical TrapsPhysical Review Letters, 2018.

Our solution

The C-Trap® Optical Tweezers – Fluorescence & Label-free Microscopy is the world’s first instrument that allows simultaneous manipulation and visualization of single-molecule interactions in real time. It combines high resolution optical tweezers, fluorescence and label-free microscopy and an advanced microfluidics system in a truly integrated and correlated solution.

The C-Trap offers you a fast workflow to seamlessly catch and manipulate single molecules. The instrument measures their structural changes or interactions while you visualize them in teal time with high spatial and temporal resolution, ultimately offering you a complete and detailed picture of biomolecular properties and interactions

Curious to learn more?

Download our webinar recording:


Download our Cell Therapy (CAR-T, TCR, NK) applications deck