Publications
Explore a range of publications within our dynamic single-molecule application field
- DNA–binding proteins
- Protein & nucleic acid folding
- Cytoskeletal structure and transport
- Phase separation
- Mechanobiology
- Other applications
- Kabtiyal, P. et al. Localized Plasmonic Heating for Single-Molecule DNA Rupture Measurements in Optical Tweezers, Nanoscale 2024
- Kim, J.M. et al., , Dynamic 1D Search and Processive Nucleosome Translocations by RSC and ISW2 Chromatin Remodelers. eLife 2024
- Chappidi, N. et al., PARP1-DNA co-condensation drives DNA repair site assembly to prevent disjunction of broken DNA ends. Cell 2024
- Sushil Pangeni et al., Rapid Long-distance Migration of RPA on Single Stranded DNA Occurs Through Intersegmental Transfer Utilizing Multivalent Interactions. JMB (TJ Ha, JHU) 2024
- Schaich, M.A. et al., Single-molecule analysis of purified proteins and nuclear extracts: Insights from 8-oxoguanine glycosylase 1. DNA repair (Ben Van Houten, U Pittsburgh) 2024
- Guo, L. et al., Joint Efforts of Replicative Helicase and SSB Ensure Inherent Replicative Tolerance of G-Quadruplex. Advanced Science 2023
- Bernacchia, L. et al., Developing novel antimicrobials by combining cancer chemotherapeutics with bacterial DNA repair inhibitors. Plos Pathogens 2023
- Ramirez, D. et al., De novo fabrication of custom-sequence plasmids for the synthesis of long DNA constructs with extrahelical features, Biophysical Journal (Nynke Dekker, TU Delft) 2023
- Buzón, P. et al. The Histone Chaperones SET/TAF‐1β and NPM1 Exhibit Conserved Functionality in Nucleosome Remodeling and Histone Eviction in a Cytochrome c ‐Dependent Manner. Advanced Science (Wouter Roos, University of Groningen) 2023
- Fazio, N. et al. E. coli RecB Nuclease Domain Regulates RecBCD Helicase Activity but not Single Stranded DNA Translocase Activity. Journal of Molecular Biology (Timothy M. Lohman, St. Louis)
- Sharma, M et al. Assembly mechanism of the inflammasome sensor AIM2 revealed by single molecule analysis. Nature Communications (Eva De Alba, UC Merced) 2023
- Sánchez, H. et al. A chromatinized origin reduces the mobility of ORC and MCM through interactions and spatial constraint. Nature Communications (Nynke Dekker, TU Delft)
- Liu, C. et al. RNase H1 facilitates recombinase recruitment by degrading DNA–RNA hybrids during meiosis. Nucleic Acids Research (Bo Sun, ShanghaiTech)
- Wan, L. et al. Unlicensed origin DNA melting by MCV and SV40 polyomavirus LT proteins is independent of ATP-dependent helicase activity. PNAS (Bennett Van Houten, University of Pittsburgh) 2023
- Cai, T. et al. Single-Molecule Force Spectroscopy of Deoxyribonucleic Acid and Deoxyribonucleic Acid Polymerase Activity Impacted by Alkylating Agents. The Journal of Physical Chemistry Letters (Huizhong Xu, Soochow University) 2023
- Ramírez Montero, D. et al. De novo fabrication of custom-sequence plasmids for the synthesis of long DNA constructs with extrahelical features. Biophysicsl Journal (Nynke Dekker, TU Delft)
- Newton, M. et al. Negative DNA supercoiling induces genome-wide Cas9 off-target activity. Molecular Cell (David Rueda, Imperial College & Simon Boulton, Francis Crick Institute)
- Belan, O. et al. Visualization of direct and diffusion-assisted RAD51 nucleation by full-length human BRCA2 protein. Molecular Cell (David Rueda, Imperial College & Simon Boulton, Francis Crick Institute)
- Greenhough L. A. et al, Structure and function of the RAD51BCD-XRCC2 tumour suppressor complex, Nature, (Simon Boulton & Steve West, Crick) 2023
- Tang, M. et al. Establishment of dsDNA-dsDNA interactions by the condensin complex. Molecular Cell (Maxim Molodtsov, Francis Crick Instuitute)
- Daniel Ramírez Montero, Nucleotide binding halts diffusion of the eukaryotic replicative helicase during activation Nature Communications, (Nynke Dekker, TU Delft) 2023
- Kacey N.Mersch “Helicase” activity promoted through dynamic interactions between a ssDNA translocase and a diffusing SSB protein. PNAS (Timothy M. Loham, St. Louis) 2023
- Ling Wang et. al., Head-on and co-directional RNA polymerase collisions orchestrate bidirectional transcription termination. Molecular Cell (Shixin Liu, Rockefeller University) 2023
- Schaich M. et al., Single-molecule analysis of DNA-binding proteins from nuclear extracts (SMADNE). NAR (Ben Van Houten, University of Pittsburgh) 2023
- Tanasie et al., Stabilization of DNA fork junctions by Smc5/6 complexes revealed by single-molecule imaging. Cell Reports (Johannes Stigler, LMU & Luis Aragon, Imperial College London) 2022
- McCauley, M. et al., Human FACT subunits coordinate to catalyze both disassembly and reassembly of nucleosomes. Cell Reports (Mark Williams, Northeastern University) 2022
- Jang S. et al., Cooperative interaction between AAG and UV-DDB in the removal of modified bases. NAR (Ben Van Houten, University of Pittsburgh) 2022
- Belan O. et al., POLQ seals post-replicative ssDNA gaps to maintain genome stability in BRCA-deficient cancer cells. Molecular Cell (Simon Boulton, Crick Institute) 2022
- Spakman et al., PICH acts as a force dependent nucleosome remodeler. Nature communications (Gijs Wuite, VU) 2022
- J.Chang et al., Smc5/6’s multifaceted DNA binding capacities stabilize branched DNA structures. Nature Communication (Shixin Liu, Rockefeller University) 2022
- Li et al., Origin recognition complex harbors an intrinsic nucleosome remodeling activity. PNAS (Shixin Liu, Rockefeller University) 2022
- Kaczmarczyk A. et al. Search and processing of Holliday junctions within long DNA by junction-resolving enzymes. Nature Communication (David Rueda, Imperial College) 2022
- Carcamo, C. C. et al. ATP Binding Facilitates Target Search of SWR1 Chromatin Remodeler by Promoting One-Dimensional Diffusion on DNA. eLife (Taekjip Ha, Johns Hopkins University) 2022
- Kuppa, et al. Rtt105 regulates RPA function by configurationally stapling the flexible domains. Nature Communications. (Edwin Antony and Taekjip Ha, Johns Hopkins University) 202
- Li, S. et al. Nucleosome-directed replication origin licensing independent of a consensus DNA sequence. Nature Communications. (Shixin Liu, Rockefeller University) 2022
- Lijuan, Guo. et al. Stochastically multimerized ParB orchestrates DNA assembly as unveiled by single-molecule analysis. Nucleic Acid Research. (Bo Sun, ShanghaiTech) 2022
- Gien, H. et al. HIV-1 Nucleocapsid Protein Binds Double-Stranded DNA in Multiple Modes to Regulate Compaction and Capsid Uncoating. Viruses (Mark Williams, Northeastern University) 2022
- Bi L. et al, The convergence of head-on DNA unwinding forks induces helicase oligomerization and activity transition, PNAS (Bo Sun, ShanghaiTech) 2022
- Kono S. et al., Resolving the subtle details of human DNA alkyltransferase lesion search and repair mechanism by single-molecule studies. PNAS, (Ingrid Tessmer, Würzburg) 2022
- Bernacchia L. et al, Identification of the target and mode of action for the prokaryotic nucleotide excision repair inhibitor ATBC, Biosci Rep (Niel Kad, Kent University) 2022
- Morin, J. A. et al. Sequence-dependent surface condensation of a pioneer transcription factor on DNA. Nature Physics (Stephan Grill, TU Dresden) 2022
- Renger, R. et al.,Co-condensation of proteins with single- and double-stranded DNA. PNAS (Stephan Grill, TU Dresden) 2022
- Hormeno S. et al, Human HELB is a processive motor protein that catalyzes RPA clearance from single-stranded DNA. Elife (Moreno, CNB, Madrid) 2022
- Chardon F. et al., CENP-B-mediated DNA loops regulate activity and stability of human centromeres. Molecular Cell (Fachinetti, Institute Curie) 2022
- Sánchez, H. et al. DNA replication origins retain mobile licensing proteins. Nature Communications (Nynke Dekker, TU Delft) 2021
- Losito, M. et al. Cas12a Target Search and Cleavage on Force-Stretched DNA. PCCP (David Rueda, Imperial College London) 2021
- Anand, R. et al. HELQ is a dual-function DSB repair enzyme modulated by RPA and RAD51. Nature (Simon Boulton, Crick Institute) 2021
- Paul, B. et al. Mechanics of CRISPR-Cas12a and engineered variants on λ-DNA. Nucleic Acids Research (Guillermo Montoya, University of Copenhagen) 2021
- Hill, C. H. et al. Structural and molecular basis for Cardiovirus 2A protein as a viral gene expression switch. Nature Communications (Neva Caliskan, Helmholtz Institute for RNA-based infection research (HIRI), University of Würzburg & Ian Brierly, University of Cambridge) 2021
- Zhang, Q. et al. Efficient DNA interrogation of SpCas9 governed by its electrostatic interaction with DNA beyond the PAM and protospacer. Nucleic Acids Research (Bo Sun, ShanghaiTech) 2021
- Buzón, P. et al. Virus self-assembly proceeds through contact-rich energy minima. Science Advances (Gijs Wuite, VU University Amsterdam & Wouter Roos, Rijksuniversiteit Groningen) 2021
- Backer, A. S. et al. Elucidating the Role of Topological Constraint on the Structure of Overstretched DNA Using Fluorescence Polarization Microscopy. J. Phys. Chem. B (Gijs Wuite, VU University Amsterdam) 2021
- de Asis Balaguer, F. et al. CTP promotes efficient ParB-dependent DNA condensation by facilitating one-dimensional diffusion from parS. eLife (Fernando Moreno-Herrero, Centro Nacional de Biotecnología) 2021
- Quail, T. et al. Force generation by protein–DNA co-condensation. Nature Physics (Stephan Grill, TU Dresden) 2021
- Belan, O. et al. Generation of versatile ss-dsDNA hybrid substrates for single-molecule analysis. STAR Protocols (David Rueda, Imperial College London) 2021
- Lin, X. et al. Cooperative DNA looping by PRC2 complexes. Nucleic Acids Research (Shixin Liu, Rockefeller University) 2021
- Ye, S. et al. Proximal Single-Stranded RNA Destabilizes Human Telomerase RNA G-Quadruplex and Induces Its Distinct Conformers. J. Phys. Chem. Lett. (Bo Sun, ShanghaiTech) 2021
- Keenen, M. M. et al. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife (Sy Redding, University of California San Francisco) 2021
- Belan, O. et al. Single-molecule analysis reveals cooperative stimulation of Rad51 filament nucleation and growth by mediator proteins. Molecular Cell (David Rueda, Imperial College London) 2021
- Zhang, S. et al. Dynamics of Staphylococcus aureus Cas9 in DNA target Association and Dissociation. EMBO Rep (Bo Sun, ShanghaiTech) 2020
- Spakman, D. et al. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Scientific Reports (Gijs Wuite, VU University Amsterdam) 2020
- Khawaja, A. et al. Distinct pre-initiation steps in human mitochondrial translation. Nature Communications (Joanna Rorbach, Karolinska Institute) 2020
- Rill, N. et al. Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. PNAS (Ingrid Tessmer, University of Würzburg) 2020
- Qin, Z. et al. Human RPA activates BLM’s bidirectional DNA unwinding from a nick. eLife (Bo Sun, ShanghaiTech) 2020
- Kretzer, B. et al. Single-Molecule Mechanics in Ligand Concentration Gradient. Micromachines (Miklós Kellermayer, Semmelweis University) 2020
- Leicher, R. et al. Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. PNAS (Shixin Liu, Rockefeller University) 2019
- Marchetti, M. et al.Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. Nano Letters (Gijs Wuite, VU University Amsterdam & Wouter Roos, Rijksuniversiteit Groningen) 2019
- Wasserman, M. et al.Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase. Cell (Shixin Liu & Michael O’Donnel, Rockefeller University) 2019
- Kosinski R. et al. Sites of high local frustration in DNA origami. Nature Communications (Barbara Saccà, University of Essen-Duisburg) 2019
- Zheng, Q. et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communications (Shixin Liu, Rockefeller University and Yael David MSKCC) 2019
- Newton, M. et al. DNA stretching induces Cas9 off-target activity. Nature Structural & Molecular Biology (David Rueda, Imperial College London) 2019
- Momčilo Gavrilov et al. Free-energy measuring nanopore device. Physical Review E (Taekjip Ha, Johns Hopkins University) 2023
- Mondol, T. et al. Aha1 regulates Hsp90’s conformation and function in a stoichiometry-dependent way. Biophysical Journal (Kasia Tych, University of Groningen) 2023
- Wang, H. et al. Mechanistic Insights into the Folding Mechanism of Region V in Ice-Binding Protein Secreted by Marinomonas primoryensi Revealed by Single-Molecule Force Spectroscopy. Langmuir (Chunguang Hu, Tanjin University)
- Scalvini, B. et al. Cytosolic Interactome Protects Against Protein Unfolding in a Single Molecule Experiment. Advanced Biology (Alireza Mashagi, Leiden University)
- Sadhanasatish, T et al. A molecular optomechanics approach reveals functional relevance of force transduction across talin and desmoplakin. Science Advances (Matthias Rief, TUM) 2023
- Pekarek L. et al., Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function. NAR (Neva Caliskan, HIRI) 2022
- Freitag M. et al., Single-molecule experiments reveal the elbow as an essential folding guide in SMC coiled-coil arms. Biophysical Journal (Johannes Stigler, LMU) 2022
- Walker, S. D. et al, The activated ClpP peptidase forcefully grips a protein substrate. Biophysical Journal (Adrian Olivares, Vanderbilt University) 2022
- Buck, S. et al. POTATO: An automated pipeline for batch analysis of optical tweezers data. Biophysical Journal (Neva Caliskan, Helmholtz Institute for RNA-based infection research (HIRI), University of Würzburg) 2022
- Liu, J. et al. Minimalist design of polymer-oligopeptide hybrid as intrinsically disordered protein-mimicking scaffold for artificial membraneless organelle. ACS Cent. Sci. (Jinqing Huang, Hong Kong University) 2022
- Naqvi, M. et al. Protein chain collapse modulation and folding stimulation by GroEL-ES, Sci. Advances (Sander Tans, AMOLF) 2022
- Pekarek L et al., Optical Tweezers to Study RNA-Protein Interactions in Translation Regulation, JoVE (Neva Caliskan, HIRI) 2022
- Zimmer, M. M. et al. The short isoform of the host antiviral protein ZAP acts as an inhibitor of SARS-CoV-2 programmed ribosomal frameshifting. Nature Communications (Neva Caliskan, Helmholtz Institute for RNA-based infection research (HIRI), University of Würzburg) 2021
- Maciuba, K. et al. Facile tethering of stable and unstable proteins for optical tweezers experiments. Biophysical Journal (Christian Kaiser, Johns Hopkins University) 2021
- Wruck, F. et al. The ribosome modulates folding inside the ribosomal exit tunnel. Communications Biology (Sander Tans, AMOLF) 2021
- Avellaneda, M. et al.Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA–protein coupling. Communications Chemistry (Sander Tans, AMOLF) 2020
- Avellaneda, M. et al.Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature (Sander Tans, AMOLF) 2020
- Muir, K. W. et al. Structural mechanism of outer kinetochore Dam1-Ndc80 complex assembly on microtubules. Science (David Barford, MRC-LMB Cambridge) 2023
- Schepers, A. V. et al. Multiscale mechanics and temporal evolution of vimentin intermediate filament networks. PNAS, (Sarah Köster, University of Göttingen) 2021
- Kučera, O. et al. Anillin propels myosin-independent constriction of actin rings. Nature Communications (Zdenek Lansky, BIOCEV) 2021
- Schaedel, L. et al. Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions. Nature Communications, (Sarah Köster, University of Göttingen) 2021
- Lam, A. J. et al. A Highly Conserved 310-Helix Within the Kinesin Motor Domain is Critical for Kinesin Function and Human Health. Science Advances (Arne Gennerich, Albert Einstein College of Medicine) 2021
- Budaitis, B. G. et al. Pathogenic Mutations in the Kinesin-3 Motor KIF1A Diminish Force Generation and Movement Through Allosteric Mechanisms.Journal of Cell Biology (Arne Gennerich, Albert Einstein College of Medicine) 2021
- Kraxner, J. et al. Post-Translational Modifications Soften Vimentin Intermediate Filaments. Nanoscale (Sarah Köster, University of Göttingen) 2020
- Mei, L. et al. Molecular mechanism for direct actin force-sensing by α-catenin. eLife (Shixin Liu & Gregory M. Alushin, Rockefeller University) 2020
- Schepers, A. et al. Tuning intermediate filament mechanics by indirect and direct charge variations. Nanoscale (Sarah Köster, University of Göttingen) 2020
- Sorkin, R. et al.Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophysical Journal (Gijs Wuite, VU University Amsterdam & Wouter Roos, Rijksuniversiteit Groningen) 2020
- Zhang, Q. et al. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation.Science Advances (Bo Sun, ShanghaiTech) 2019
- Gutierrez-Escribano, et al. A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Science Advances (David Rueda, & Luis Aragon, Imperial College London) 2019
- Lorenz, C. et al.Lateral Subunit Coupling Determines Intermediate Filament Mechanics. Physical Review Letters (Sarah Köster, University of Göttingen) 2019
- Forsting, J. et al.Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading. Nano Letters (Sarah Köster, University of Göttingen) 2019
- Block, J.et al. Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science Advances (Sarah Köster, University of Göttingen) 2018
- Block, J. et al. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain. Physical Review Letters (Sarah Köster, University of Göttingen) 2017
- Alshareedah, I. et al., Determinants of viscoelasticity and flow activation energy in biomolecular condensates. Science Advances 2024
- Kota D. et al., Adenosine Triphosphate Mediates Phase Separation of Disordered Basic Proteins by Bridging Intermolecular Interaction Networks. JACS 2024
- Wadsworth, G.M. et al., RNAs undergo phase transitions with lower critical solution temperatures. Nature Chemistry, (Priya Banerjee, University at Buffalo) 2023
- Gui, T. et al. Targeted perturbation of signaling-driven condensates. Molecular Cell (Jurian Schuijers, UMC Utrecht)
- Wadsworth, G. et al. RNAs undergo phase transitions with lower critical solution temperatures. Nature Chemistry (Priya Banerjee, University at Buffalo) 2023
- Galvanetto, N. et al. Extreme dynamics in a biomolecular condensate. Nature (Ben Schuler, University of Zurich) 2023
- Teng, Wang.et al. Bloom syndrome helicase compresses single-stranded DNA into phase-separated condensates. Angewandte Chemie International Edition (Bo Sun, ShanghaiTech) 2022
- Kota, D, et al. Macromolecular Regulation of the Material Properties of Biomolecular Condensates. The Journal of Physical Chemistry Letters (Huan-Xiang Zhou, University of Illinois Chicago) 2022
- Manjia Li. et al, Controlling synthetic membraneless organelles by a red-light-dependent singlet oxygen-generating protein. Nature Communication (Jingqing Huang, HKUST) 2022
- Joris Van Lindt et al., F/YGG-motif is an intrinsically disordered nucleic-acid binding motif. RNA biology (Leuven) 2022
- Ghosh, A. et al. Shear relaxation governs fusion dynamics of biomolecular condensates. Nature Communications, (Huan-Xiang Zhou, University of Illinois Chicago) 2021
- Alshareedah, I. et al. Programmable viscoelasticity in protein-RNA condensates with disordered sticker-spacer polypeptides. Nature Communications (Priya Banerjee, University at Buffalo) 2021
- Lin, SN. et al. Direct visualization of the effect of DNA structure and ionic conditions on HU–DNA interactions. Scientific Reports (Gijs Wuite, VU University Amsterdam) 2021
- Newton, M. D. et al. A Minimal Load-and-Lock Ru Luminescent DNA Probe. Angew. Chem. Int. Ed. (David Rueda, Imperial College London) 2021
- Rhine, K. et al. Single-molecule and ensemble methods to probe RNP nucleation and condensate properties. Methods (Sua Myong, Johns Hopkins University) 2021
- Kaur, T. et al. Sequence-encoded and Composition-dependent Protein-RNA Interactions Control Multiphasic Condensate Morphologies. Nature Communications (Priya Banerjee, University at Buffalo) 2021
- Alshareedah, I. et al. Quantifying Viscosity and Surface Tension of Multi-Component Protein-Nucleic Acid Condensates. Biophysical Journal (Priya Banerjee, University at Buffalo) 2021
- Jawerth, L. et al. Protein condensates as aging Maxwell fluids. Science (Tony Hyman, MPI-CBG) 2020
- Ghosh, A. and Zhou, H.-X. Determinants for Fusion Speed of Biomolecular Droplets. The Journal of Physical Chemistry B (Huan-Xiang Zhou, University of Illinois Chicago) 2020
- Alshareedah, I. et al. Phase transition of RNA−protein complexes into ordered hollow condensates. PNAS (Priya Banerjee, University at Buffalo) 2020
- Alshareedah, I. et al. Interplay between Short-Range Attraction and Long-Range Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein–RNA Complexes. Journal of the American Chemical Society (Priya Banerjee, University at Buffalo) 2019
- Gui, X., et al. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly. Nature Communications (Bo Sun, ShanghaiTech & Cong Liu, CAS-SIOC) 2019
- Kaur, T. et al. Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates. Biomolecules (Priya Banerjee, University at Buffalo) 2019
- Jawerth, L. et al. Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps. Physical Review Letters (Tony Hyman, MPI-CBG) 2018
- Evers, T.M.J. et al. Single-cell analysis of innate immune cell mechanics: an application to cancer immunology. Material Advances 2024
- Jo, M.H. et al. Determination of single-molecule loading rate during mechanotransduction in cell adhesion Science 2024
- Evers, T.M.J. et al. Mechanics of serotonin-producing human entero-endocrine cells. Mechanobiology in Medicine2024
- Liu, D. et al. Dynamic encounters with red blood cells trigger splenic marginal zone B cell retention and function, Nature Immunology 2023
- De Belly, H. et al. Cell protrusions and contractions generate long-range membrane tension propagation. Cell (Carlos Bustamante, UC Berkeley) 2023
- Cheng Lyu et al., Advanced glycation end-products as mediators of the aberrant crosslinking of extracellular matrix in scarred liver tissue. Nature Biomedical Engineering (Yanan Du, Tsinghua university) 2023
- Zhorabek F. et al., Construction of multiphasic membraneless organelles towards spontaneous spatial segregation and directional flow of biochemical reactions. Chemical Science (Jinqing Huang, Hong Kong UST) 2023
- Stadler R. et al., A circular zone of attachment to the extracellular matrix provides directionality to the motility of Toxoplasma gondii in 3D. Elife (Gary E. Ward, Vermont University) 2022
- Goren S. et al., Probing Local Force Propagation in Tensed Fibrous Gels, Small (Raya Sorkin, Tel Aviv) 2022
- Quikun Y. et al., Directed assembly of genetically engineered eukaryotic cells into living functional materials via ultrahigh-affinity protein interactions. Sci. Advances (Jinqing Huang, Hong Kong UST) 2022
- Dharan R. et al., Transmembrane proteins tetraspanin 4 and CD9 sense membrane curvature. PNAS (Raya Sorkin, Tel Aviv) 2022
- Siahaan, V. et al. Microtubule Lattice Spacing Governs Cohesive Envelope Formation of Tau Family Proteins. Nature Chemical Biology (Zdenek Lansky, BIOCEV) 2022
- Mulla, Y. et al. Weak catch bonds make strong networks. Nature Materials (Sander Tans, AMOLF & Gijsje Koenderink, TU Delft) 2022
- Evers T. et al., Single-Cell Mechanical Characterization of Human Macrophages. Advanced Nanobiomed Research (Alireza, Leiden University) 2022
- Sheikhhassani, V. et al., Single cell force spectroscopy of erythrocytes at physiological and febrile temperatures reveals mechano-modulatory effects of atorvastatin. Soft matter, (Mashaghi, Leiden) 2022
- Evers, T. M. J. et al. Single-cell analysis reveals chemokine-mediated differential regulation of monocyte mechanics. iScience, (Alireza Mashaghi , Leiden University) 2022
- Vasse, G. F. et al. Single Cell Reactomics: Real‐Time Single‐Cell Activation Kinetics of Optically Trapped Macrophages. small methods, (Wouter Roos, Rijksuniversiteit Groningen) 2021
- Liu, Z. et al., A Biophysics Toolbox for Reliable Data Acquisition and Processing in Integrated Force–Confocal Fluorescence Microscopy. ACS Photonics 2024
- Xu, H. et al., 3D nanofabricated soft microrobots with super-compliant picoforce springs as onboard sensors and actuators, Nature Nanotechnology 2024
- Zhang, D. et al., Rethinking the relationships between gel like structure and sludge dewaterability based on a binary gel like structure model: Implications for the online sensing of dewaterability. Water Research 2023
- Wenhao Fu, et al., Efficient optical plasmonic tweezer-controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus, Nature Communications, (Jinqing Huang, Hong Kong University of Science and Technology) 2023
- Shendrik, P. et al. Membrane Tension Inhibits Lipid Mixing by Increasing the Hemifusion Stalk Energy. (Raya Sorkin, Tel Aviv University) 2023
- Fu, W. et al., Efficient optical plasmonic tweezer- controlled single-molecule SERS characterization of pH-dependent amylin species in aqueous milieus. Nature Communications (Jinquing Huang, Hong Kong UST) 2023
- Dharan R., Tetraspanin 4 stabilizes membrane swellings and facilitates their maturation into migrasomes. Nature communications (Raya Sorkin, Tel Aviv) 2023
- Cheppali S., Supported Natural Membranes on Microspheres for Protein–Protein Interaction Studies. ACS Appl. Mater. Interfaces, (Raya Sorkin, Tel Aviv) 2022
- Molcrette B, et al.Experimental study of a nanoscale translocation ratchet. PNAS (Fabien Montel, École Normale Supérieure Lyon) 2022
- Freitag, M. et al. Identification and correction of miscalibration artifacts based on force noise for optical tweezers experiments. J. Chemical Physics (Johannes Stigler, LMU) 2021
- Dai, X. et al. Optical tweezers-controlled hotspot for sensitive and reproducible surface-enhanced Raman spectroscopy characterization of native protein structures. Nature Communications (Jinqing Huang, Hong Kong University of Science and Technology) 2021
Our solution
The C-Trap® Optical Tweezers – Fluorescence & Label-free Microscopy is the world’s first instrument that allows simultaneous manipulation and visualization of single-molecule interactions in real time. It combines high resolution optical tweezers, fluorescence and label-free microscopy and an advanced microfluidics system in a truly integrated and correlated solution.
The C-Trap offers you a fast workflow to seamlessly catch and manipulate single molecules. The instrument measures their structural changes or interactions while you visualize them in teal time with high spatial and temporal resolution, ultimately offering you a complete and detailed picture of biomolecular properties and interactions