Today’s scientific trends are racing towards smaller scales and experimentation that provides both structural and mechanistic insights. To decipher protein structure and function you need methods capable of studying how proteins fold correctly and undergo conformational changes to accomplish their biological function. We offer solutions that enable you to measure, manipulate and visualize protein folding and unfolding, with both high throughput and resolution.
Scientists can use optical tweezers to trap beads and catch a biomolecule, such as a protein, in between. The folding and unfolding of the protein can then be monitored by moving the beads while measuring the force and extension. The combination of optical tweezers with simultaneous multicolor fluorescence measurements (e.g. with FRET) allows correlating the global mechanical properties of the protein with the local structural properties. With optical tweezers – fluorescence microscopy you can:
Scientists can use acoustic forces to manipulate, stretch and measure hundreds of single molecules at the same time. Multiple proteins can be tethered between a bead and a glass surface. Using Acoustic Force Spectroscopy (AFS) technology you can then apply controlled forces on all beads synchronously and probe the mechanical properties of each protein in parallel. With this highly parallel single-molecule method you can:
Technology
The combination of optical tweezers and fluorescence microscopy allows for simultaneous manipulation and visualization of molecular interactions in real-time.
Technology
A novel single-molecule and single-cell manipulation technology that allows the user to apply acoustic forces on multiple biomolecules and cells while tracking them in 3D with high accuracy.
Parallel Single-Molecule Force Spectroscopy
© 2021 LUMICKS.
Specifications and equipment are subject to change without any notice or obligation on the part of the manufacturer.
Privacy Policy | Code of Conduct