LUMICKS empowers researchers
Be it big or small. Great science is our ultimate goal.
See below the latest publications from LUMICKS instrument users
- DNA/RNA–protein interactions
- Protein folding and conformational changes
- Cellular structure and transport
- Protein droplets and phase separation
- Immuno-Oncology
- Newton, M. et al. DNA stretching induces Cas9 off-target activity. Nature Structural & Molecular Biology2019, 26(3): 185-192.
- Zheng, Q. et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communications 2019, 10(1): 1289.
- Kosinski R. et al. Sites of high local frustration in DNA origami. Nature Communications 2019, 10(1): 1061.
- Wasserman, M. et al.Replication Fork Activation Is Enabled by a Single-Stranded DNA Gate in CMG Helicase.Cell 2019, 178(3): 600-611.e616.
- Marchetti, M. et al.Real-Time Assembly of Viruslike Nucleocapsids Elucidated at the Single-Particle Level. Nano Letters 2019, 19(8): 5746-5753.
- Gutierrez-Escribano, P. et al.A conserved ATP- and Scc2/4-dependent activity for cohesin in tethering DNA molecules. Science Advances 2019, 5(11): eaay6804.
- Zhang, Q. et al. The post-PAM interaction of RNA-guided spCas9 with DNA dictates its target binding and dissociation. Science Advances 2019, 5(11): eaaw9807.
- Kretzer, B. et al. Single-Molecule Mechanics in Ligand Concentration Gradient. Micromachines 2020, 11(2): 212.
- Qin, Z. et al. Human RPA activates BLM’s bidirectional DNA unwinding from a nick. eLife 2020;9:e54098.
- Rill, N. et al. Alkyltransferase-like protein clusters scan DNA rapidly over long distances and recruit NER to alkyl-DNA lesions. PNAS 2020, 117(17):9318-9328.
- Khawaja, A. et al. Distinct pre-initiation steps in human mitochondrial translation. Nature Communications 2020, 11(1): 2932.
- Spakman, D. et al. Constructing arrays of nucleosome positioning sequences using Gibson Assembly for single-molecule studies. Scientific Reports 2020, 10(1):9903.
- Zhang, S. et al. Dynamics of Staphylococcus aureus Cas9 in DNA target Association and Dissociation. EMBO Rep 2020 e50184.
- Leicher, R. et al. Single-molecule and in silico dissection of the interaction between Polycomb repressive complex 2 and chromatin. PNAS, 2019, 10.1073/pnas.2003395117.
- Keenen, M. M. et al. HP1 proteins compact DNA into mechanically and positionally stable phase separated domains. eLife 2021, 10:e64563.
- Leicher, R. et al. Single-stranded nucleic acid sensing and coacervation by linker histone H1. bioRxiv, 2021, 2021.03.17.435841.
- Renger, R. et al. Co-condensation of proteins with single- and double-stranded DNA. bioRxiv, 2021, 2021.03.17.435834.
Protein folding and conformational changes publications
- Avellaneda, M. et al.Simultaneous sensing and imaging of individual biomolecular complexes enabled by modular DNA–protein coupling. Communications Chemistry 2020, 3(1): 20.
- Avellaneda, M. et al.Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Nature 2020,578(7794): 317-320.
- Naqvi, M. et al. Polypeptide collapse modulation and folding stimulation by GroEL-ES. bioRxiv2020.2006.2017.157057.
- Wruck, F. et al. The ribosome modulates folding inside the ribosomal exit tunnel. bioRxiv2020.2006.2030.180224.
Cellular structure and transport publications
- Block, J. et al. Nonlinear Loading-Rate-Dependent Force Response of Individual Vimentin Intermediate Filaments to Applied Strain. Physical Review Letters 2017, 118(4): 048101.
- Block, J. et al.Viscoelastic properties of vimentin originate from nonequilibrium conformational changes. Science Advances 2018, 4(6): eaat1161.
- Forsting, J. et al.Vimentin Intermediate Filaments Undergo Irreversible Conformational Changes during Cyclic Loading. Nano Letters 2019, 19(10): 7349-7356.
- Lorenz, C. et al.Lateral Subunit Coupling Determines Intermediate Filament Mechanics. Physical Review Letters2019, 123(18): 188102.
- Sorkin, R. et al.Synaptotagmin-1 and Doc2b Exhibit Distinct Membrane-Remodeling Mechanisms. Biophysical Journal 2020, 118(3): 643-656.
- Schepers, A. et al. Tuning intermediate filament mechanics by indirect and direct charge variations. Nanoscale 2020, 10.1039/D0NR02778B.
- Mei, L. et al. Molecular mechanism for direct actin force-sensing by α-catenin. eLife 2020.
- Kraxner, J. et al. Post-Translational Modifications Soften Vimentin Intermediate Filaments. Nanoscale 2020, 10.1039/D0NR07322A.
- Kučera, O. et al. Anillin propels myosin-independent constriction of actin rings. bioRxiv 2020: 2020.2001.2022.915256.
- Schaedel, L. et al. Vimentin Intermediate Filaments Stabilize Dynamic Microtubules by Direct Interactions. bioRxiv 2020.2005.2020.106179.
- Mulla, Y. et al. Weak catch bonds make strong networks. bioRxiv 2020.2007.2027.219618.
- Budaitis, B. G. et al. Pathogenic Mutations in the Kinesin-3 Motor KIF1A Diminish Force Generation and Movement Through Allosteric Mechanisms. bioRxiv 2020.09.03.281576.
- Lam, A. J. et al. A Highly Conserved 310-Helix Within the Kinesin Motor Domain is Critical for Kinesin Function and Human Health. bioRxiv 2020.09.22.308320.
- Nguyen, A. et al. Multi-oscillation microrheology via Acoustic Force Spectroscopy enables frequency-dependent measurements on endothelial cells at high-throughput. Lab on a Chip, 2021, 10.1039/D0LC01135E.
Protein droplets and phase separation publications
- Jawerth, L. et al. Salt-Dependent Rheology and Surface Tension of Protein Condensates Using Optical Traps. Physical Review Letters 2018, 121(25): 258101.
- Kaur, T. et al. Molecular Crowding Tunes Material States of Ribonucleoprotein Condensates. Biomolecules 2019, 9(2): 71.
- Gui, X., et al. Structural basis for reversible amyloids of hnRNPA1 elucidates their role in stress granule assembly.Nature Communications 2019, 10(1): 2006.
- Alshareedah, I. et al.Interplay between Short-Range Attraction and Long-Range Repulsion Controls Reentrant Liquid Condensation of Ribonucleoprotein–RNA Complexes. Journal of the American Chemical Society 2019, 141(37): 14593-14602.
- Alshareedah, I. et al. Phase transition of RNA−protein complexes into ordered hollow condensates. PNAS 2020, 117(27):15650-15658.
- Ghosh, A. and Zhou, H.-X. Determinants for Fusion Speed of Biomolecular Droplets. The Journal of Physical Chemistry B, 2020, 10.1021/acs.jpcb.0c06230.
- Jawerth, L. et al. Protein condensates as aging Maxwell fluids. Science 2020, 10.1126/science.aaw4951.
- Kaur, T. et al. Sequence-encoded and Composition-dependent Protein-RNA Interactions Control Multiphasic Condensate Topologies. bioRxiv 2020.2008.2030.273748.
- Morin, J. A. et al. Surface condensation of a pioneer transcription factor on DNA. bioRxiv, 2020, 2020.09.24.311712.
- Leicher, R. et al. Single-stranded nucleic acid sensing and coacervation by linker histone H1. bioRxiv, 2021, 2021.03.17.435841.
Immuno-Oncology publications
- Fernandez de Larrea C. et al. Defining an Optimal Dual-Targeted CAR T-cell Therapy Approach Simultaneously Targeting BCMA and GPRC5D to Prevent BCMA Escape-Driven Relapse in Multiple Myeloma. Blood Cancer Discovery 2020, 1(2): 146-154.
- Kamsma D. et al. Single-Cell Acoustic Force Spectroscopy: Resolving Kinetics and Strength of T Cell Adhesion to Fibronectin. Cell Reports 2018, 24(11): 3008-3016.